Distinct Leaf-trait Syndromes of Evergreen and Deciduous Trees in a Seasonally Dry Tropical Forest
نویسندگان
چکیده
In seasonally dry tropical forests, tree species can be deciduous, remaining without leaves throughout the dry season, or evergreen, retaining their leaves throughout the dry season. Deciduous and evergreen trees specialize in habitats that differ in water availability (hillside and riparian forest, respectively) and in their exposure to herbivore attack (seasonal and continuous, respectively). We asked whether syndromes of leaf traits in deciduous and evergreen trees were consistent with hypothesized abiotic and biotic selective pressures in their respective habitat. We measured seven leaf traits in 19 deciduous and 11 evergreen tree species in a dry tropical forest in Western Mexico, and measured rates of herbivory on 23 of these species. We investigated the covariance of leaf traits in syndromes related to phenology and associated physiology, and to anti-herbivory defense. We found evidence for syndromes that separated phenological strategies among four traits: toughness, water content, specific leaf area, and carbon:nitrogen (C:N) ratios. We found a trade-off between two other traits: trichomes and latex. Overall, evergreen species exhibited lower rates of herbivory than deciduous species. Lower rates of herbivory were explained by a syndrome of higher toughness, lower water content, and higher C:N ratios, which are traits representative of evergreen trees. Phenology and trait syndromes did not exhibit significant phylogenetic signal, consistent with the hypothesis of evolutionary convergence among phenologies and associated leaf-trait syndromes. Our results suggest that deciduous and evergreen trees could respond to differential water availability and herbivory in their respective habitats by converging on distinct leaf-trait syndromes. Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp.in Spanish is available at http://www.blackwell-synergy.com/loi/btp.
منابع مشابه
Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest.
BACKGROUND AND AIMS The co-occurring of evergreen and deciduous angiosperm trees in Asian tropical dry forests on karst substrates suggests the existence of different water-use strategies among species. In this study it is hypothesized that the co-occurring evergreen and deciduous trees differ in stem hydraulic traits and leaf water relationships, and there will be correlated evolution in droug...
متن کاملSeasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology.
Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and A...
متن کاملSoil and Stem Water Storage Determine Phenology and Distribution of Tropical Dry Forest Trees
Many trees of tropical dry forests flower or form new shoots soon after leaf shedding during the dry season, i.e., during a period when trees are likely to be severely water stressed. To resolve this apparent paradox, phenology and seasonal changes in tree water status were monitored during two consecutive dry seasons in > 150 trees of 37 species growing at different sites in the tropical dry l...
متن کاملHydraulics and life history of tropical dry forest tree species: coordination of species' drought and shade tolerance.
Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. We measured the sapwood (K(s) ) and leaf (K(l) ) hydraulic conductivities of 40 coexisting tree species in a Bolivian dry forest, and examined associations with fu...
متن کاملDetecting leaf phenology of seasonally moist tropical forests in South America with multi-temporal MODIS images
Leaf phenology of tropical evergreen forests affects carbon and water fluxes. In an earlier study of a seasonally moist evergreen tropical forest site in the Amazon basin, time series data of Enhanced Vegetation Index (EVI) from the VEGETATION and Moderate Resolution Imaging Spectroradiometer (MODIS) sensors showed an unexpected seasonal pattern, with higher EVI in the late dry season than in t...
متن کامل